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Abstract
We study the critical behaviour of symmetric φ4

4 theory including irrelevant
terms of the form φ4+2n/�2n

0 in the bare action, where �0 is the UV cutoff
(corresponding, e.g., to the inverse lattice spacing for a spin system). The
main technical tool is renormalization theory based on the flow equations
of the renormalization group, which permits us to establish the required
convergence statements in generality and rigour. As a consequence the effect of
irrelevant terms on the critical behaviour may be studied to any order without
using renormalization theory for composite operators. This is a technical
simplification and seems preferable from the physical point of view. In this
short paper we restrict ourselves for simplicity to the symmetry class of the
Ising model, i.e. one-component φ4

4 theory. The method is general, however.

PACS numbers: 6460, 0550

1. Introduction

One of the great achievements of theoretical physics in the 1970s was the unification of
concepts and ideas from quantum field theory and statistical mechanics through the Wilson
renormalization group [WiKo]. In particular renormalized perturbation theory was applied
successfully to the study of second-order phase transitions and to the calculation of critical
exponents [BGZ, Amit, ZJ]. Somewhat later Polchinski [Pol] realized that renormalized
perturbation theory itself could be based directly on the flow equations (FEs) of the
renormalization group (an idea which had been proposed by Wilson himself in the late 1960s,
as we learned from Brézin). Thus a physical problem, the control of the flow of effective
actions under certain boundary conditions, replaced the analysis of Feynman diagrams with
rather technical tools such as Zimmermann forests and Hepp sectors [Kop, Sal]. One of the
challenging conceptual problems in the analysis of critical phenomena was the question of
universality, i.e. to realize why large classes of theories, specified essentially by the respective
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Hamiltonians, should give rise to the same critical behaviour characterized through the critical
exponents. Experimentally these depend only on dimensionality and symmetry and not on
details of the dynamics. Modifications of the Hamiltonians thus should lead only to subleading
corrections. We restrict our explicit presentation to one of the simplest and best known classes,
that of the Ising model. The method is general, however. Passing to the continuous description,
which should be viable for correlation lengths ξ much larger than the lattice spacing, i.e. in
the vicinity of the critical point, the symmetry class of the Ising model is presented by φ4

theory, symmetric under φ → −φ. The standard action at the scale of the UV cutoff �0,
corresponding to the inverse lattice spacing in position space, is then

L0 =
∫

(a φ2(x) + b(∂µφ)2(x) + c φ4(x)) d4x. (1)

If we restrict ourselves to perturbation theory the constants a, b, c are to be viewed as power
series in the renormalized coupling g or in h̄. In the standard notation this expression is
rewritten as

L′ 0 =
∫ (

Z

2
(∂µφ)2(x) +

Z

2
(m2 + δm2)φ2(x) +

g0

4!
Z2 φ4(x)

)
d4x (2)

where L′ 0 also includes the term of order zero in perturbation theory, that is to say

L′ 0 = L0 +
∫

( 1
2 (∂µφ)2(x) + 1

2m
2φ2(x)) d4x. (3)

The fieldφ corresponds to the renormalized field. In (2) we introduced the standard notation for
the wavefunction renormalization Z and the mass counterterm δm as well as the bare coupling
g0. We restrict ourselves to the four-dimensional theory, which also serves to study lower-
dimensional theories through the ε-expansion2. Starting from the Ising model Hamiltonian on
a cubic lattice one arrives at the action (1) on performing block spin transformations, expanding
in local terms and passing to the continuous limit, on neglecting all irrelevant terms, i.e. those
of mass dimension larger than four. The aim of this paper is to show that this is indeed
justified when analysing long-distance phenomena near the critical point. This means that the
dominant contributions to the correlation functions near the critical point are obtained from (1)
for suitable choices of a, b, c. More precisely we will add a finite sum

A(φ) =
∫ N∑

n=1

Z2+n

�2n
0

g4+2n

(4 + 2n)!
φ4+2n(x) d4x (4)

to (1). Here the UV cutoff �0 appears naturally when expanding in local terms, by dimensional
analysis. This means that the couplings g4+2n are dimensionless (in d = 4)3. Since the
statements of renormalization theory are generally of perturbative nature, i.e. valid on formal
expansion in the couplings g, they require small values of these to be reliable. When
including (4) the question arises of how the size of the irrelevant couplings compares to that of
the original φ4 coupling g. Here of course different situations may arise and can be analysed.
Later on we will regard the situation where they are chosen such that the loop expansion
remains valid, which means generally that

g4+2n ∼ gn+1. (5)

2 Dimensional regularization cannot be naturally accommodated in the FE framework. Still the associated minimal
renormalization schemes should be implementable. This has been shown for analytic regularization [KoSm].
3 We choose conventions such that a factor of Z2+n appears in front of g4+2n, which will somewhat simplify the
notation later. Note that Z will depend on the couplings g4+2n. In particular it will also be different from 1 for g = 0,
if some of the g4+2n do not vanish.
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The expansion with respect to local terms also produces higher-dimensional terms of the form
(φn∂wφm)(x), which contain |w| derivatives with respect to the coordinates x. Starting from a
cubic lattice only terms respecting rotational symmetry, i.e. invariant under the Euclidean
group, should appear in the continuum limit, i.e. when approaching the critical region.
Furthermore in (4) only terms invariant under φ → −φ are generated if Z2-symmetry is
unbroken. For brevity of notation we restrict ourselves to (4); inclusion of derivative terms
would only lead to minor changes. In the explicit treatment we will even limit ourselves to a
single insertion ∼g6φ

6, for simplicity of notation.
The effects of irrelevant terms have of course been studied extensively in the

literature [Weg, BGZ] and can be found in textbooks, for example [ZJ, Chapter 26]. In the
field theory approach these terms were analysed by renormalization theory for composite
operators, as it existed in the early 1970s [Zim]. Treating φ6, for example, as a composite
operator insertion means that one is restricted to Green functions carrying at most one insertion
of thisφ6 term4. Then one has to fix renormalization conditions for the inserted Green functions
up to dimension six (thus on the two-, four- and six-point functions and on derivatives of the
two- and four-point functions). The general and probably optimal bound on the coefficient of
the term φ6 in L0 is then of the form P(log �0), i.e. a polynomial in logarithms of �0—as
has been shown, e.g., in [KeKo1]—and not ∼�−2

0 P(log �0) as in (4). Otherwise stated this
means that in general it is not possible to find out the renormalization conditions which would
give a bound ∼�−2

0 , since the associated dynamical system is unstable. From the physical
point of view it seems therefore preferable to start directly from the modification of the bare
action as in (4), and to perform the renormalization for this theory. We note however that
it is not really possible to study the question in such a way that the only change in the bare
action consists in adding the term ∼φ6 to it. The counterterms ∼φ4 and ∼φ2 change at the
same time if we keep the renormalization conditions fixed. This phenomenon corresponds
to what is called operator mixing in the theory of composite operators. However, whereas
these renormalization conditions generally are related to the physical parametrization of the
theory near the critical region and thus accessible to experiment, this seems not to be the case
for the Green functions carrying, for example, φ6-insertions. So our novel results consist in
presenting a framework which permits us to study an arbitrary number of irrelevant insertions
for a fixed set of renormalization conditions on the relevant parameters only. Thus the study of
these insertions is generalized and simplified at the same time as being compared to composite
operator theory. We should also mention that, in a more phenomenological context, the FE
framework has been widely used in recent years for calculations of critical exponents in various
approximation schemes (see e.g. [Alf, MT, TW]; for a recent review see [BB]).

Renormalizability proofs based on the renormalization group are conceptually simple and
rigorous and give a transparent view of the universality of critical behaviour, in showing that
the modification of the action by irrelevant terms does not influence (the dominant part of) the
critical behaviour. In this note we would like to make this explicit for the simplest case, the
universality class of the Ising model. In the next section we will present the required results
on the renormalizability of the theories with and without φ6-insertion, in particular in the
critical region. In the last section we also use the (standard) renormalization group equations
to analyse the subdominant contributions of the irrelevant insertion to the critical behaviour.

4 It is possible to go beyond one insertion, but then the number of renormalization conditions one has to fix increases
with the number of insertions, corresponding to the fact that a φ6 theory is nonrenormalizable.
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2. Renormalization of φ4
4-theory with irrelevant terms

Renormalization theory as we are going to use it here is based on the FEs of the renormalization
group due to Wilson [WiKo], and particularly to Polchinski [Pol] as regards the application
to the perturbative renormalization problem. The FE is obtained by successively integrating
out momenta in the (regularized) theory starting from the UV cutoff �0 down to the scale
� < �0. The final renormalized theory is obtained on taking the limits �0 → ∞ and
� → 0. Its differential form can be obtained when deriving with respect to � the generating
functional of the connected (free propagator) amputated Green (CAG) functions of the theory
with momenta restricted to lie between � and �0. The scales � and �0 enter through the
regularized propagator, which for the massive theory takes the form

C�,�0(p) = 1

p2 + m2

{
exp

(
−p2 + m2

�2
0

)
− exp

(
−p2 + m2

�2

)}
. (6)

This expression seems unnecessarily complicated for a UV regularization. The additional
parameter � is however indispensable for the study of the renormalization group flow, and it
is a physical parameter in this sense.

Its Fourier transform is

Ĉ�,�0(x) =
∫
p

C�,�0(p) eipx. (7)

We use the conventions5
∫
p

:= ∫
R4

d4p

(2π)4 , φ(x) = ∫
p
ϕ(p) eipx, δ

δφ(x)
= (2π)4

∫
p

δ
δϕ(p)

e−ipx .
For finite �0 and in finite volume the theory can be given rigorous meaning starting from

the functional integral

exp

(
−1

h̄
(L�,�0(φ) + I�,�0)

)
=
∫

dµ�,�0 (!) exp

(
−1

h̄
L�0,�0(φ + !)

)
(8)

where the factors of h̄ have been introduced to allow for a consistent loop expansion in
the following, which permits us to stay with a single expansion parameter in the presence
of two coupling constants. In (8) dµ�,�0 (!) denotes the (translation invariant) Gaussian
measure with covariance h̄Ĉ�,�0(x). The normalization factor e− 1

h̄
I�,�0 is due to vacuum

contributions. It diverges in infinite volume so that we can take the infinite-volume limit only
when it has been eliminated. We do not make the finite volume explicit here since it plays no
role in the sequel. One may convince oneself that L�,�0(φ) is equal to

L�,�0(φ) = − ln Z�,�0((Ĉ�,�0)−1 φ) + 1/2 〈φ, (Ĉ�,�0)−1φ〉. (9)

Here Z�,�0(j) is the (standard notation for the) generating functional of the Green functions
of the (regularized) theory. By 〈 , 〉 we denote the scalar product in L2(R

4, d4x) so that the
second term contains the zero-loop two-point function. Thus L�,�0(φ) generates the CAG,
apart from the order zero contribution given by the inverted free propagator. The functional
L�0,�0(φ) = L0(φ) is the bare action including counterterms, to be calculated from the
renormalization conditions. On adding the zero-loop two-point function and including the
φ6-insertion it takes the form (see (1), (2))

L′ 0 =
∫ (

Z

2
(∂µφ)2(x) +

Z

2
(m2 + δm2)φ2(x) +

g0

4!
Z2 φ4(x) +

Z3

�2
0

g6

6!
φ6(x)

)
d4x. (10)

5 Here the ‘fields’ φ(x) are assumed to be very well behaved, e.g. to live in the Schwartz space S(R4). They will
drop out from the expressions for the correlation functions in any case.
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Here Z, δm2 and g0 are formal power series in h̄. The Wilson FE is is a differential equation
for the functional L�,�0 , obtained from (8) on differentiating w.r.t. �:

∂�(L�,�0 + I�,�0) = h̄

2

〈
δ

δφ
, (∂�Ĉ�,�0)

δ

δφ

〉
L�,�0 − 1

2

〈
δ

δφ
L�,�0 , (∂�Ĉ�,�0)

δ

δφ
L�,�0

〉
.

(11)

Changing to momentum space and expanding in a formal power series w.r.t. h̄ we write (with
slight abuse of notation)

L�,�0(ϕ) =
∞∑
l=0

h̄l L
�,�0
l (ϕ). (12)

From L
�,�0
l (ϕ) we then obtain the CAG of loop order l in momentum space as6

(2π)4(n−1)δϕ(p1) · · · δϕ(pn)L
�,�0
l |ϕ≡0 = δ(4)(p1 + · · · + pn)L�,�0

l,n (p1, . . . , pn−1) (13)

where we have written δϕ(p) = δ/δϕ(p). Note again that our definition of the L�,�0
l,n is

such that L�,�0
0,2 vanishes. This is important for the set-up of the inductive scheme, through

which perturbative renormalizability will be established. The FE (11) rewritten in terms of the
CAG (13) takes the following form:

∂�∂w L�,�0
l,n (p1, . . . , pn−1) = 1

2

∫
k

(∂�C�,�0(k)) ∂wL�,�0
l−1,n+2(k,−k, p1, . . . , pn−1)

−
∑

l1+l2=l, w1+w2+w3=w

n1+n2=n

1
2 [∂w1L�,�0

l1,n1+1(p1, . . . , pn1) (∂
w3∂�C�,�0(p′))

×∂w2L�,�0
l2,n2+1(pn1+1, . . . , pn)]ssym (14)

where

p′ = −p1 − · · · − pn1 = pn1+1 + · · · + pn.

Here we have written (14) directly in a form where also momentum derivatives of the CAG (13)
are performed, and we used the shorthand notation

∂w :=
n−1∏
i=1

3∏
µ=0

(
∂

∂pi,µ

)wi,µ

with w = (w1,0, . . . , wn−1,3) |w| =
∑

wi,µ ∈ N0.

(15)

The symbol ssym (as defined in [KMR]) means summation over those permutations
of the momenta p1, . . . , pn which do not leave invariant the subsets {p1, . . . , pn1} and
{pn1+1, . . . , pn}. Note that the CAGs are symmetric in their momentum arguments by
definition. A simple inductive proof of the renormalizability of φ4

4 theory has been given
several times in the literature [KKS,KeKo1,Kop], and we will not repeat it in detail. The line
of reasoning can be resumed as follows. The induction hypotheses to be proven are:

(A) Boundedness.

|∂wL�,�0
l,n ( �p)| � (� + m)4−n−|w| P

(
log

� + m

m

)
P
( | �p|
� + m

)
. (16)

(B) Convergence.

|∂�0∂
wL�,�0

l,n ( �p)| � 1

�3
0

P
(

log
�0

m

)
(� + m)6−n−|w| P

( | �p|
� + m

)
. (17)

6 The normalization of the L�,�0
l,n is defined differently from earlier [KeKo1, KKS, Kop].
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Here and in the following the P denote (each time they appear possibly new) polynomials with
non-negative coefficients. The coefficients depend on l, n, |w|,m, but not on �p, �, �0. We
used the shorthand �p = (p1, . . . , pn−1) and | �p| = sup{|p1|, . . . , |pn|}. The statement (17)
implies renormalizability: it proves the limits lim�→0,�0→∞ L�,�0

l,n ( �p) to exist to all loop
orders l. But the statement (16) has to be obtained first to prove (17). To prove (16) we use
an inductive scheme that proceeds upwards in 2l + n, for given 2l + n upwards in l, and for
given (l, n) downwards in |w|, starting from some arbitrary |wmax| � 3. The important point
to note is that the terms on the rhs of the FE (14) always are prior to the ones on the lhs in the
inductive order. So the bound (16) may be used as an induction hypothesis on the rhs. Besides
we also need a bound on the propagator and its momentum derivatives: it is easy to prove that

|∂w∂�C�,�0(p)| � �−3−|w| P(|p|/�) exp

(
−p2 + m2

�2

)
. (18)

Equipped with this bound and the induction scheme, we may then integrate the FE, where
terms with n + |w| � 5 are integrated down from �0 to �, since for those terms we have the
boundary conditions following from (10)7

∂wL�0,�0
l,n ≡ 0 if n + |w| > 4 and n �= 6 and L�0,�0

l,6 ≡ g6
1

�2
0

Z3
l . (19)

The relevant terms (those with n+ |w| � 4) are integrated upwards from 0 to �. The boundary
conditions for these terms are the renormalization conditions we impose and which fix the
counterterms Z, δm2, g0. We may fix for example

L0,�0
l,2 (0) = 0 ∂p2L0,�0

l,2 (0) = 0 L0,�0
l,4 (0) = g δl,0. (20)

To go away from the renormalization point (here chosen at zero momentum) we may use the
Schlömilch or integrated Taylor formula, which takes us back to the irrelevant situation.

The bound (17) holds for the Z2-symmetric theory only; it is sharper than the one
from [KKS, KeKo1, Kop] (but generally assumed to be true in the literature). Its proof is
based on the same inductive scheme as that for (16). We start from the FE (14) with |w|
momentum derivatives applied on it, integrate over � and derive w.r.t. �0. For the terms on
the rhs, on which this derivative does not apply, we can use the bound (16). For the terms
derived w.r.t. �0 we can use (17), applying our induction scheme. The best bound we can
arrive at is essentially saturated by the boundary terms, we find.

We first regard the case of the irrelevant terms with n+ |w| � 5, and here we start looking
at the case n + |w| � 6. We have the equation (in shorthand notation)

−∂�0∂
wL�,�0

l,n = ∂w(rhs of the FE)|�=�0 +
∫ �0

�

d�′∂�0 ∂
w (rhs of the FE)(�′). (21)

Now using (16) and (17) to bound the rhs of (21) we verify (17) on performing the integral.
In the case n + |w| = 5 it suffices to regard zero external momentum (referring again to the
Schlömilch formula for deviations from zero, which takes us back to n + |w| = 6). In both
cases n = 4, |w| = 1 and n = 2, |w| = 3 the first term of the rhs of (21) is zero due to our
boundary conditions, whereas the second vanishes due to Euclidean invariance.

Terms with n+ |w| � 4 have to be analysed at the renormalization point indicated in (20),
and they are integrated from 0 to �:

∂�0∂
wL�,�0

l,n =
∫ �

0
d�′ ∂�0∂

w (rhs of the FE )(�′). (22)

7 What we really need in the proof is a bound on L�0,�0
l,6 of the form |L�0,�0

l,6 | � g6
1
�2

0
P(log �0

m
). The bounds on

L�0,�0
l,2 are independent of L�,�0

l,6 (at the same loop order) by the order of the induction scheme. Once these bounds

are established, they permit us to bound Z3 by P(log �0
m

), which is then compatible with (19).



Irrelevant interactions without composite operators 2687

Only the second term from (21) appears on the rhs because the renormalization conditions are
�0 independent. In this term we may factorize �−3

0 P(log �0) and verify (17) by induction.
As a result of these considerations we obviously obtain the same bounds for the theory with
an insertion of φ6 as for the theory with g6 = 0.

To study the theory in the critical domain, and particularly the role of the irrelevant
insertions in this domain, we have to analyse the correlation functions in the limit of large
correlation length, i.e. in the language of field theory, (the approach to) the massless theory.
Thus we regard the propagator

C�,�0(p) = 1

p2

[
exp

(
− p2

�2
0

)
− exp

(
− p2

�2

)]
(�, p) �= (0, 0) (23)

which is singular for sup(�2, p2) → 0. However it has a finite limit for p2 → 0, if � stays
bounded from below so that (18) stays valid for � � m. Only the case � < m has to be
reconsidered.

For � → 0 in fact the CAG may become singular at certain exceptional momentum
configurations, i.e. where subsums of external momenta vanish, but first, for the massless
theory to exist at all, certain restrictions on the renormalization conditions have to be observed.
More specifically the renormalization points have to be chosen as follows:

L0,�0
l,2 (0) = 0 (∂pµ

∂pν
L0,�0

l,2 )(p = k)|δµ,ν
= 0 L0,�0

l,4 (k1, k2, k3) = g δl,0. (24)

This means the mass renormalization has to be performed at zero momentum, whereas the
wavefunction renormalization and coupling constant renormalization have to be performed at
nonexceptional external momenta, i.e. k2 = µ2 �= 0 and no subsum in k1, k2, k3, k4 vanishes.
Since we have defined the L to be symmetric functions of their arguments it is natural to make
a symmetric8 choice, for example, �ki · �kj = µ2

4 (4δij − 1) for a fixed nonvanishing momentum

scale µ. In (24) (∂pµ
∂pν

L0,�0
l,2 )(p = k)|δµ,ν

refers to the decomposition of the O(4) invariant
tensor

∂pµ
∂pν

L0,�0
l,2 (p)|p=k = A(µ2)δµ,ν + B(µ2)kµkν

and we have defined

∂pµ
∂pν

L0,�0
l,2 (p = k)|δµ,ν

= A(µ2) (25)

so the renormalization condition implies A(µ2) = 0. Note that B(µ2) is irrelevant and
need not be fixed by a renormalization condition. Obviously renormalization of the massless
theory introduces a new mass scale, which is generally called µ. The problem of exceptional
momentum configurations can be studied in full generality and rigour with FEs [KeKo2]:
it is possible to define an IR index γ with 2γ ∈ N, which measures the exceptionality of
the momentum configuration P = (p1, . . . , pn). Using the shorthand notations L = L0,∞

and L� = L�,∞, we may phrase the results from the renormalization proof [KeKo2] for the
massless symmetric φ4

4 theory as follows:

(a) The n-point CAGs with n > 2 are smooth functions of the external momenta in the (open)
subspace of (arbitrarily) bounded nonexceptional momentum configurations. We have

∂wLl,n(p1, . . . , pn−1) = lim
�→0

∂wL�
l,n(p1, . . . , pn−1). (26)

(b) Generally one has

|∂wL�
l,n(p1, . . . , pn−1)| � µ4−n−|w|

(µ

�

)2γ (P )+|w|
P
(

log
µ

�

)
0 < � � µ. (27)

8 However, this is not necessary because the solutions of the FE turn out symmetric by construction.
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For the two-point function at � = 0 one can also show that it vanishes as O(p2 P(log µ2

p2 ))

near zero momentum.
Since� acts as an infrared regulator the bounds (16), (17) still hold for� > µ, on replacing

m by µ. For � < µ these bounds also hold for nonexceptional momentum configurations. For
exceptional configurations they have to be multiplied by the power of µ/� appearing in (27).
We do not enter into details of the infrared problem, since the bounds in the region � < µ

are independent of the φ6-insertion and therefore the proof from [KeKo2] may be taken over
unaltered. As regards the term �−3

0 P(log �0
µ
) appearing in (17), it does not interfere with the

exceptional momentum problem and can be factored out in the inductive proof as done before
in the massive case.

We now want to establish bounds for the difference between the theories with and without
φ6-insertion. The CAGs of this theory are to be called +L�,�0

l,n . This means we define (in
obvious notation)

+L�,�0
l,n (p1, . . . , pn−1) = L�,�0

l,n (g6;p1, . . . , pn−1) − L�,�0
l,n (0;p1, . . . , pn−1). (28)

Here it is understood that the L�,�0
l,n (g6) and the L�,�0

l,n (0) obey the same renormalization

conditions, which means that all the relevant +L�,�0
l,n are imposed to vanish at the

renormalization point. We may obtain the FEs for the +L�,�0
l,n by taking the difference between

those for L�,�0
l,n (g6) and L�,�0

l,n (0). We only give it in shortened form without momentum
arguments, the explicit form following directly from (14). We obtain

∂�∂w +L�,�0
l,n = 1

2

∫
k

(∂�C�,�0(k)) ∂w+L�,�0
l−1,n+2(k,−k, . . .)

−
∑

l1+l2=l, w1+w2+w3=w

n1+n2=n

1
2 [∂w1+L�,�0

l1,n1+1 (∂w3∂�C�,�0) ∂w2(L�,�0
l2,n2+1(g6)

+L�,�0
l2,n2+1(0))]ssym. (29)

With this system of equations we can inductively prove the following bounds for the massless
theory. For nonexceptional momentum configurations one finds

|∂w+L�,�0
l,n ( �p)| �




P(log �0
µ
)

�2
0

µ6−n−|w| P
( | �p|

µ

)
for 0 � � � µ

P(log �0
µ
)

�2
0

�6−n−|w| P
( | �p|

�

)
for µ � � � �0

(30)

whereas for general momentum configurations one obtains

|∂w+L�,�0
l,n ( �p)| �




P(log �0
µ
)

�2
0

P(log µ/�)µ6−n−|w|
(µ

�

)2γ+|w|
P
( | �p|

µ

)
for 0 � � � µ

P(log �0
µ
)

�2
0

�6−n−|w| P
( | �p|

�

)
for µ � � � �0.

(31)

We do not give a proof of these bounds, since they are obtained using the same inductive scheme
as before, applying also the bounds for L�,�0

l,n (g6) and L�,�0
l,n (0) obtained previously. The

improvement factor P(log �0
µ
)/�2

0 is respected in particular by the new boundary conditions:
all renormalization conditions vanish, and the only nonvanishing boundary term, i.e. the term
∼g6 Z3/�2

0 for the six-point function, satisfies (30) and (31). Still we would like to point out
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that rigorous bounds such as (17), (30) and (31) are hard (if not impossible) to obtain by other
methods. We will use them in the next section to obtain equivalent bounds on the corrections
to scaling due to irrelevant terms.

3. Renormalization group equations and critical behaviour

We will use the previous results to analyse the modification of critical behaviour by irrelevant
terms without composite operator formalism. The advantages of this procedure have been
mentioned before. In this last section we will change to the standard notation in the sense
that now L0,�0

2 denotes the two-point function including the zero-loop contribution. Our CAG
n-point functions L0,�0

n are defined in terms of the field variable φ, which is the renormalized
field in standard language. Relating them to the bare functions expressed in terms of the bare
field φB, which is related to φ through the relation

φB = Z1/2φ (32)

we obtain

Lb
n(pi, g0, g6,�0) = Zn/2

(
g, g6,

�0

µ

)
L0,�0

n (pi, g, g6, µ). (33)

The sign in the exponent of Z is related to the fact that the functions L0,�0 are the connected free
propagator amputated functions. This sign changes if we use the full propagator amputated
functions instead, which is of course possible, but less natural in the FE framework. Taking a
derivative of (33) w.r.t. ln µ at fixed bare parameters we obtain the (standard) renormalization
group equation for the renormalized theory[

∂

∂ ln µ
+ β

(
g, g6; µ

�0

)
∂

∂g
+

1

2
n γ

(
g, g6; µ

�0

)]
L0,�0

n (pi, g, g6, µ) = 0. (34)

We have introduced the β and γ functions for the renormalized theory

β

(
g, g6; µ

�0

)
= ∂ g

∂ ln µ

∣∣∣∣
g0,g6,�0

γ

(
g, g6; µ

�0

)
= ∂ ln Z

∂ ln µ

∣∣∣∣
g0,g6,�0

. (35)

Since we want to use this equation for large but nevertheless finite�0 the functionsβ(g, g6; µ

�0
)

and γ (g, g6; µ

�0
) depend also on �0. Due to (17) the �0-dependent terms are bounded by

O((
µ

�0
)−2P(log �0

µ
)), since β(g, g6; µ

�0
) and γ (g, g6; µ

�0
) may be expressed in terms of L0,�0

using (34) for fixed values of n: by dimensional analysis we transform the derivative w.r.t. µ
into a derivative w.r.t. p and �0 and obtain from the equations for n = 4 and for n = 2

β

(
g, g6; µ

�0

)
=

3∑
i=1

pi,ν

∂

∂pi,ν

L0,�0
4 (g, g6)|r.p. − 4g p2 ∂2

∂(p2)2
L0,�0

2 (g, g6)|r.p.

+O

((
µ

�0

)2

P
(

log
�0

µ

))
γ

(
g, g6; µ

�0

)
= 2 p2 ∂2

∂(p2)2
L0,�0

2 |r.p.

+O

((
µ

�0

)2

P
(

log
�0

µ

))
. (36)

The functions are to be taken at the renormalization points (see (24)). The contributions
∼O(�−2

0 P log �0) arise when transforming the µ-derivative into one on �0 on using the
bound (17). So to be precise we rewrite (34) as[

∂

∂ ln µ
+ β(g, g6)

∂

∂g
+

1

2
n γ (g, g6)

]
L0,�0

n (pi, g, g6, µ) = O

((
µ

�0

)2

P
(

log
�0

µ

))
(37)
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Figure 1. Contributions ∼g6 to the relation between g and g0 up to two loops.

where the whole dependence on �0 has been regrouped on the rhs (with the definitions
β(g, g6) = β(g, g6; 0), γ (g, g6) = γ (g, g6; 0)). When setting g6 = 0 we obtain the
corresponding equation with functions β(g, 0; µ

�0
) and γ (g, 0; µ

�0
) obeying the equations

analogous to (36) for g6 = 0. From this it follows on using (30) that

+β

(
g, g6; µ

�0

)
:= β

(
g, g6; µ

�0

)
− β

(
g, 0; µ

�0

)
= O

((
µ

�0

)2

P
(

log
�0

µ

))
(38)

and similarly for γ . This bound can of course be verified in lowest orders by direct calculation
of the respective β-functions. When the φ6-term is added, the two diagrams given in figure 1
contribute to the relation between g and g0 and thus to β(g, g6; µ

�0
) up to two loops9. Since

the second diagram is µ independent, only the first contributes to the β-function. The value
of the diagram is

g g6
2

16π4
ln

4

3
+ O

((
µ

�0

)2

log

(
�0

µ

))

so that after derivation w.r.t. ln µ its contribution is of the order given in (38).
We refer to the textbooks [ZJ, IZ] for the method of solution of (34), which permits us to

compare L0,�0
n (pi, g, g6, µ) with L0,�0

n (
pi

s
, g(s), g6, µ), the critical region corresponding to

s → ∞. Here the running coupling at scale µ/s is defined through
dg (s)

d ln s
= −β(g(s)) g(1) = g. (39)

From (34), together with dimensional analysis, one obtains

L0,�0
n (pi, g, g6, µ) = s−4+n exp

(
1

2
n

∫ g(s)

g

γ (g′, g6;µ/�0)

β(g′, g6;µ/�0)
dg′
)

L0,s�0
n (spi, g(s), g6, µ) (40)

or on replacing pi by pi/s

L0,�0
n

(pi

s
, g, g6, µ

)
= s−4+n exp

(
1

2
n

∫ g(s)

g

γ

β
dg′
)

L0,s�0
n (pi, g(s), g6, µ). (41)

For s � 1 the coupling will approach its fixed-point value g∗ for which by definition
β(g∗) = 0. In the perturbative region we have g∗ = 0 in d = 4, whereas in d < 4 one finds
g∗ = O(ε) with ε = 4 − d . If g is in the vicinity of the fixed point the integral

∫ g(s)

g

γ (g′)
β(g′) dg′

is approximated by its value at g∗

−
∫ g(s)

g

γ (g′)
β(g′)

dg′ =
∫ ln s

0
γ (g(s ′)) d ln s ′ ∼ γ (g∗) ln s. (42)

The neglected terms give subdominant contributions for s → ∞; they are analysed in [BGZ].
From this we then find for the dominating behaviour

L0,�0
n

(pi

s
, g, g6, µ

)
∼ s−4+n(1− γ (g∗)

2 ) L0,∞
n (pi, g

∗, g6, µ) (43)

9 We have not included those diagrams which are exactly cancelled by diagrams carrying an insertion of a counterterm.
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which shows that the fixed-point value γ (g∗) is to be identified with the critical exponent η.
The renormalization group equation for the difference functions (28) can be obtained

from (34). We write it in the form[
∂

∂ ln µ
+ β

(
g, 0; µ

�0

)
∂

∂g
+

n

2
γ

(
g, 0; µ

�0

)]
+L0,�0

n (pi, g, g6, µ)

= −
[
+β

(
g, g6; µ

�0

)
∂

∂g
+

n

2
+γ

(
g, g6; µ

�0

)]
L0,�0

n (pi, g, g6, µ). (44)

For the inhomogeneous equation we make the ansatz

+L0,�0
n (pi, g, g6, µ) = U 0,�0

n (pi, g, g6, µ)L0,�0
n (pi, g, 0, µ). (45)

From this we obtain the following differential equation for U 0,�0 :(
∂

∂ ln µ
+ β

(
g, 0; µ

�0

)
∂

∂g

)
U 0,�0

= −
[
+β

(
g, g6; µ

�0

)
∂

∂g
ln L0,�0

n (pi, g, 0, µ) +
n

2
+γ

(
g, g6; µ

�0

)]

+O

((
µ

�0

)−4

P
(

log
�0

µ

))
. (46)

In the following we will neglect the last term, which gives even smaller corrections; for the first
two terms on the rhs of this equation we write Vn(pi, µ, g; g6,�0). Its solution is then obtained
as a sum of the general solution of the corresponding homogeneous equation—which in turn
is obtained as previously for the case γ = 0—plus a special solution of the inhomogeneous
equation, which can be written as the integral over Vn(pi, µ, g; g6,�0). As a final result we
obtain the following renormalization group relation for U 0,�0

n (pi, g, g6, µ):

U 0,�0
n (pi, g, g6, µ) = U 0,�0

n (pi, g(s), g6, µ/s) +
∫ 0

− ln s

Vn(pi, µet , g(e−t ); g6,�0) dt. (47)

By dimensional analysis we obtain

U 0,�0
n (pi, g, g6, µ) = U 0,s�0

n (s pi, g(s), g6, µ) +
∫ 0

− ln s

Vn(spi, sµet , g(e−t ); g6, s�0) dt

(48)

since the canonical dimension of Un is zero. Multiplying by L0,�0
n (pi, g, 0, µ), using (41) and

passing to momenta pi/s we thus obtain

+L0,�0
n

(
pi

s
, g, g6, µ

)
= s−4+n exp

(
1

2
n

∫ g(s)

g

γ (g′, 0;µ/�0)

β(g′, 0;µ/�0)
dg′
)[

+L0,s�0
n (pi, g(s), g6, µ)

+L0,s�0
n (pi, g(s), 0, µ)

∫ 0

− ln s

Vn(pi, sµet , g(e−t ); g6, s�0) dt

]
. (49)

The second term can be bounded using (38) (together with (16))10; to the first term we can
apply (30) to obtain the following bound on +L0,�0

n (
pi

s
, g, g6, µ):∣∣∣∣+L0,�0

n

(
pi

s
, g, g6, µ

)∣∣∣∣ � s−4+n exp

(
1

2
n

∫ g(s)

g

γ

β
dg′
)[

O

((
µ

s�0

)2

P
(

log
s�0

µ

))

+|L0,s�0
n (pi, g(s), 0, µ)|O

((
µ

�0

)2

P
(

log
�0

µ

))]
. (50)

10 It is useful to cut the integration interval into subintervals of length ln 2 and sum over the bounds for the integrand
in the subintervals to avoid a factor of ln s in the bound for this term.
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This bound is dominated for s large by the second term so that we obtain∣∣∣+L0,�0
n

(pi

s
, g, g6, µ

)∣∣∣ � s−4+n exp

(
1

2
n

∫ g(s)

g

γ

β
dg′
)

|L0,s�0
n (pi, g(s), 0, µ)|

×O

((
µ

�0

)2

P
(

log
�0

µ

))
. (51)

The analysis of the prefactor is the same as for L0,�0
n (

pi

s
, g, 0, µ). Therefore, close to the

critical region, the corrections of the long-distance behaviour due to the irrelevant term are
of the relative order O((

µ

�0
)2) up to logarithms. For this term to be negligible we need of

course µ � �0, that is to say, the renormalized parameters are close to the critical ones,
which is a natural parametrization in the critical region. We emphasize that the corrections to
scaling stem from the analysis of the terms vanishing for �0 → ∞, which are often neglected
altogether in the literature. In the composite operator analysis one finds instead corrections
∼s−2P(log s), which would be smaller for s > �0

µ
. However the terms ∼(

µ

�0
)2 are always

present, though often neglected, so that the corresponding results only hold up to s ∼ �0
µ

. For
larger s one has to readapt the renormalization conditions at µ′ � µ. In terms of the bare
theory the readaptation consists in adding new counterterms ∼φ2 and ∼φ4. This is well known
from the treatment in the composite operator formalism, where such terms are introduced due
to operator mixing.

In conclusion we thus realize that in our approach the corrections to scaling due to irrelevant
terms are suppressed by O((

µ

�0
)2) to any order in the number of insertions. These irrelevant

terms are introduced directly in the bare action, keeping the renormalization conditions fixed.
In composite operator theory, which is completely bypassed here, the coefficient of the φ6-
term in the bare action is not suppressed by ( 1

�0
)2, correspondingly one does not obtain such a

suppression in the corrections to scaling. Instead, on subtracting insertions of lower dimension,
to be calculated from the relations for operator mixing, one obtains a suppression factor ∼s−2,
which is larger for s < �0

µ
, becomes of similar size for s ∼ �0

µ
and is unreliable beyond.
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